

BIOGASDONERIGHT™ REPORT AND RESULTS OF THE FIRST INTERNATIONAL STUDY:

INTRODUCTION AND RATIONALE

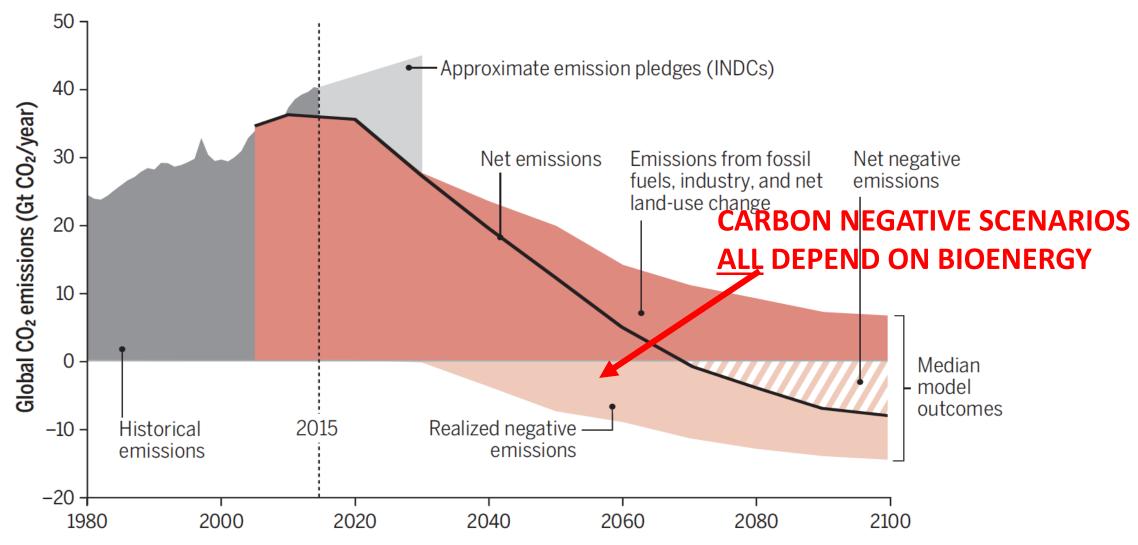
PRESENTED BY:

PROFESSOR BRUCE E. DALE

MICHIGAN STATE UNIVERSITY, USA

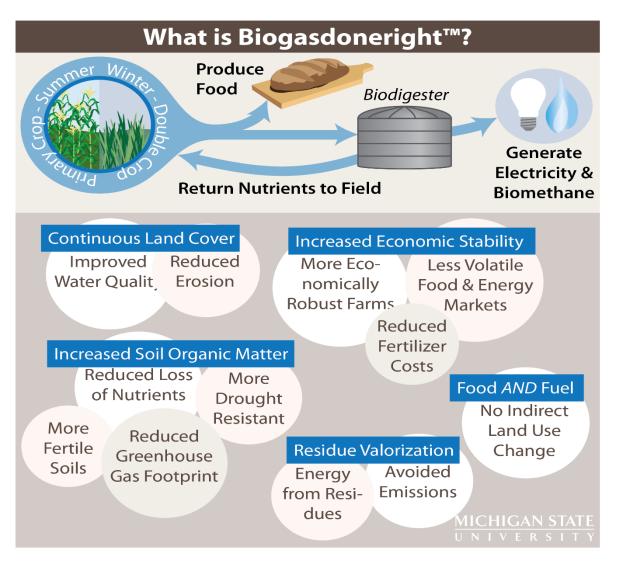
FEBRUARY 14, 2018
ROME, ITALY

Dr. Kurt Thelen Apologizes for Not Being Here: He is Still Looking for His Car


BACKGROUND: WHAT ARE THE CURRENT TRENDS & WHAT ARE THE IMPLICATIONS OF THESE TRENDS?

- 7+ billion people on the planet with 2 billion more expected in the next few decades food production must expand significantly and soon
- Modern agriculture <u>and</u> human well-being require lots of energy- currrently 85% fossil fuels → we need large scale renewable energy, <u>soon</u>
- Atmospheric CO2 just passed 400 ppm and its growth rate is accelerating → we must remove & store huge amounts of CO2, soon…but wind & solar electricity cannot be carbon negative and cannot meet all energy needs
- Agriculture is under stress, farms going out of business, based on unsustainable practices
 → farmers must cut costs, increase income, try new methods, soon
- These problems are strongly linked → thus we must address problems in an integrated way, not "solving" one problem while making another problem worse
- These problems are not "in the future"—they are here <u>now</u> → we need proven, available solutions; we must focus research & development on <u>available</u> solutions
- These problems are rooted in agriculture (land management) → thus the land managers (farmers) must benefit from solving the problems—or they will not be solved

EMISSIONS REDUCTION IS <u>NOT ENOUGH</u>: WE NEED LARGE SCALE <u>NEGATIVE EMISSIONS</u>



Anderson and Peters. 2016 sciencemag.org **SCIENCE**

CAN BIOGASDONERIGHT™ CONTRIBUTE TO SOLVING THESE (AND MANY OTHER) PROBLEMS?

Biogasdoneright™ principles:

- Combine sequential cropping & anaerobic digestion to produce food <u>and</u> energy in circular economy approach
- Recycle plant nutrients and store stable carbon in soils (carbon negative food <u>and</u> energy systems)-<u>dual purpose</u> bioenergy
- Use best practices including: precision tillage, timing nutrient application with plant growth cycle, continuous soil cover
- Improve water quality and soil fertility, increase biodiversity
- Increase economic <u>and</u> environmental resilience of agriculture

Year 1	Year 2			Year 3			Year 4		
Sept	Jan	May	Sept	Jan	May	Sept	Jan	May	Sept
Conventional: Wheat, Corn & Soy									
	• •		• •		• •	• •			
\/\/b	eat Grai	in Ra	re Groun	nd Mai	ze Grain	Raro C	Ground	Soybe	an
VVII		Da 			Silage			Joybe	
				OI	Jilage				
Biogasdoneright™: Wheat, Corn & Soy + Sequential Cropping									
	•		• •						
Wh	eat Grai				Maize G			Soybe	an
		or N	/laize S	Silage	or Sila	ge S	ilage		
		Sil	age						
								MOULCAS	LOTATE
 Chemical Fertilizer ■ Livestock Effluent ■ Digestate MICHIGAN STATE UNIVERSITY 									

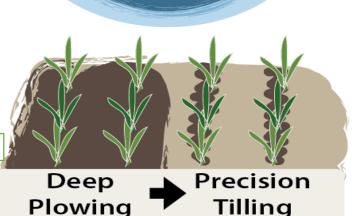
CAN FARMERS BENEFIT FROM BIOGASDONERIGHT™? YES!



More Attractive Investments

Market Diversification

Better Cash Flow


More Jobs

DECREASE IN FARM INPUT COSTS

CIRCULAR ECONOMY

THE INTERNATIONAL POTENTIAL OF BIOGASDONERIGHT™: IS IT EXPORTABLE?

(OR IS BIOGASDONERIGHT™ ONLY POSSIBLE IN ITALY ⁽²⁾)

- "The Potential of Argentina" Jorge Hilbert, Instituto de Ingenieria Rural, Argentina
- "The Potential of the United States" Dr. Tom Richard, Pennsylvania State University, USA
- "BiogasDoneRight™ a negative emissions technology for delivering net zero emissions by 2050" Dr. Jeremy Woods, Imperial College, UK

INTERNATIONAL POTENTIAL OF BIOGASDONERIGHT™ (BDR)

CIB CONSCIENT ITALIANO BIOGAS

- "The Potential of Argentina" Ing. Jorge Hilbert
 - Argentina could replace all of its natural gas imports with biogas produced using BDR principles (\$2.300.000.000 annually, or ~28% of trade deficit)
 - Extremely important in Argentina where gas is 54 % of the total energy consumed
- "The Potential of the United States" Dr. Tom Richard
 - Biogas potential in the US exceeds 20% of fossil natural gas.
 - Renewable Fuel incentives are driving rapid growth.
 - Double cropping can also provide water quality benefits
- "BiogasDoneRight a negative emissions technology for delivering net zero emissions by 2050" *Dr. Jeremy Woods*
 - BDR must play an important role in delivering sustainable development (through meeting the Sustainable Development Goals)
 - BDR can deliver cost effective climate mitigation & adaptation agricultural solutions at costs well below US\$100 per tonne CO2 abated (with some at negative costs)